

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

303169833

COMBINED SCIENCE

0653/32

Paper 3 Theory (Core)

May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 24 pages. Any blank pages are indicated.

DC (RW/SG) 316980/3 © UCLES 2023

[Turn over

BLANK PAGE

0653/32/M/J/23

© UCLES 2023

1 (a) Fig. 1.1 is a diagram of a human heart.

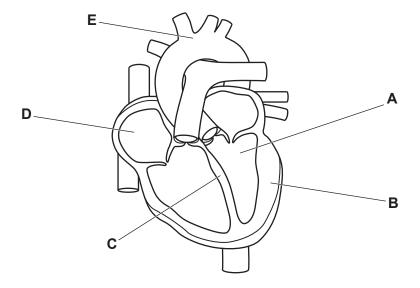


Fig. 1.1

(1)	State the letter in Fig. 1.1 that identifies the:	
	right atrium	
	septum	
		2]

(ii) Part **E** in Fig. 1.1 transports blood to the body.

Circle the name of part **E**.

aorta coronary artery pulmonary artery vena cava [1]

(b) A student investigates how their pulse rate changes during different types of physical activity. The pulse rate is measured in beats per minute (bpm).

Fig. 1.2 is a bar chart showing the results.

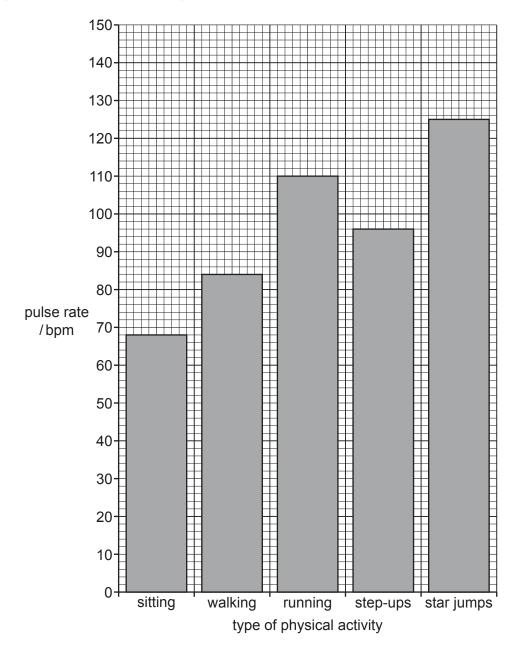


Fig. 1.2

(i) Identify the type of physical activity in Fig. 1.2 where the pulse rate is the highest.

(ii) Calculate the difference in pulse rate between running and step-ups.

(c) Fig. 1.3 shows a photomicrograph of blood.

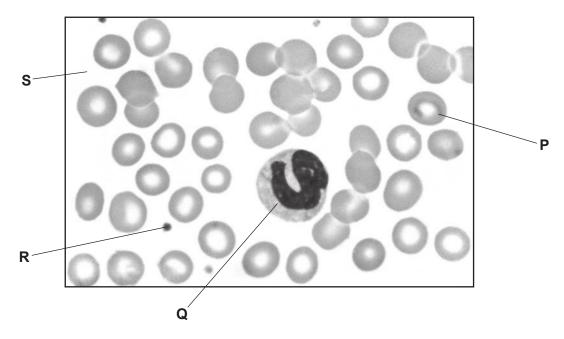


Fig. 1.3

Table 1.1 shows the names and functions of some parts of the blood labelled $\bf P$, $\bf Q$, $\bf R$ and $\bf S$ in Fig. 1.3.

Complete Table 1.1.

Table 1.1

name of part	letter in Fig. 1.3	function
red blood cell		transport of oxygen
	S	transport of hormones
white blood cell		

[3]

[Total: 9]

- 2 A student investigates sodium chloride, NaCl.
 - (a) The student uses solid sodium chloride to make a concentrated aqueous solution of sodium chloride. The student then uses the apparatus shown in Fig. 2.1 to electrolyse this solution.

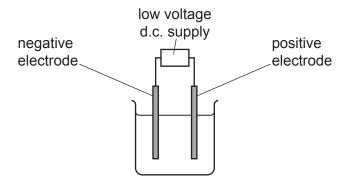


Fig. 2.1

(1)	State what is meant by concentrated and aqueous.	
	concentrated	
	aqueous	
(ii)	State the name of the product formed at the positive electrode.	[2]
		[1]
(iii)	State the name of the type of chemical bonding found in compounds that can electrolysed.	be
		[1]
The	e student adds aqueous silver nitrate to aqueous sodium chloride under acidic conditio	ns.
Stat	te the observation when these two solutions are mixed.	
		[1]

© UCLES 2023 0653/32/M/J/23

(b)

(c) Aqueous sodium chloride is made when dilute hydrochloric acid is neutralised by aqueous solution **X**, as shown in Fig. 2.2.

The reading on the thermometer increases during the reaction.

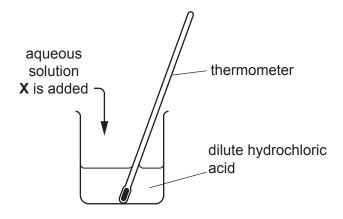


Fig. 2.2

(i)	Suggest the identity of X .	
	[1]
(ii)	State what happens to the pH of the mixture when X is added.	
	[1]
(iii)	State the type of chemical reaction that causes the reading on the thermometer increase.	to
	[1]
An	atom of sodium is represented as shown.	
	²³ Na	
Dec	duce the number of electrons and neutrons in this atom.	
	number of electrons =	
	number of neutrons =	
	[2	2

(d)

3 Fig. 3.1 shows a speed–time graph for a car on part of a journey along a road.

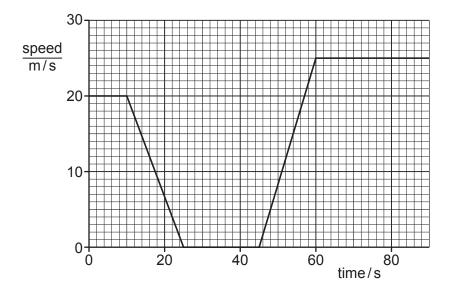


Fig. 3.1

(a) ((i)	Deduce the time	interval for whic	h the car is	s moving at	a constant sp	beed of 20 m/s	s
-------	-----	-----------------	-------------------	--------------	-------------	---------------	----------------	---

(ii) During the journey the car stops at traffic lights.

Deduce the time interval for which the car stops at the traffic lights.

(iii) On Fig. 3.1, mark with an **X** a point at which the car is decelerating.

[1]

(b) For part of the journey the car is travelling at 25 m/s.

Calculate the speed of the car in km/h.

(c) In another part of the journey the car travels at a constant speed of $30\,\text{m/s}$ for $65\,\text{s}$.

Calculate the distance the car travels in this time interval.

(d) At the traffic lights the driver sees a red light. The light contains a lamp and lens.

Fig. 3.2 shows the arrangement of the lamp and the lens. The lamp is at the principal focus of the lens.

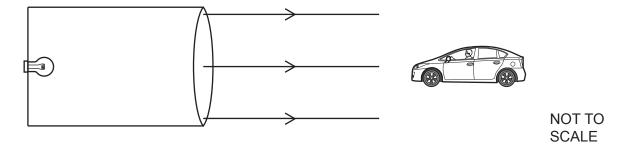


Fig. 3.2

(i) Complete the sentence.

When light waves pass from air into glass, they can undergo due to a change in the of the waves.

(ii) On Fig. 3.2, complete the **three** rays emitted by the traffic light to show how they reach the lens from the lamp. [1]

[Total: 9]

4 (a) A student investigates photosynthesis.

The student:

- adds an indicator solution to three test-tubes, A, B and C
- puts one leaf into test-tube B and one leaf into test-tube C
- puts a bung into the top of each test-tube
- wraps test-tube C with dark card
- places the test-tubes in a warm room with plenty of light for 24 hours.

Fig. 4.1 is a diagram of the test-tubes after 24 hours.

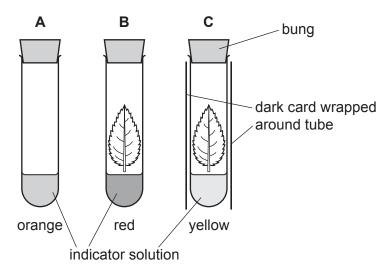


Fig. 4.1

The colour of the indicator solution shows the concentration of carbon dioxide in the test-tube.

- red = low carbon dioxide concentration
- orange = medium carbon dioxide concentration
- yellow = high carbon dioxide concentration

Explain the results for test-tubes **B** and **C**.

Use the words photosynthesis and respiration in your answer.

test-tube B	 	 	 	

[3]

(b) Fig. 4.2 shows a photomicrograph of cells in the lower epidermis of a leaf.

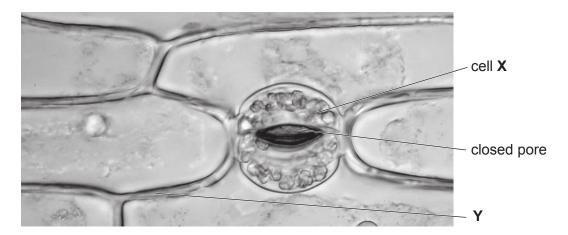


Fig. 4.2

(i)	State the function	of the structure la	abelled Y in Fig. 4.	2.	
					[1]
(ii)	Complete the sen	tences about Fig.	4.2.		
	Use words from th	ne list.			
	Each word may be	e used once, mor	e than once or not	at all.	
	air	guard	mesophyll	liquid	
	minerals	palisade	stomata	water	
	Cell X is called a .		cell.		
	Cell X changes sh	ape to control the	e size of the pore.		
	The pores in leave	es are called			
	The pores open to	allow		to diffuse out du	ring transpiration. [3]
(iii)	State one change transpiration.	e to the environ	mental conditions	that would incr	ease the rate of
					[1]
(iv)	State the name of	the vessels that	transport water fro	m the roots to the	e leaf.
					[1]

[Total: 9]

BLANK PAGE

Cop	oper	is a transition element.
(a)	(i)	State one physical property and one chemical property of copper.
		physical property
		chemical property
		[2]
	(ii)	Suggest why some coins are made of copper alloy rather than pure copper.
		[1]
(b)	Cop	oper is extracted from copper oxide by heating with carbon.
	Alu	minium is extracted from aluminium oxide by electrolysis.
	Arg	on, a noble gas, does not react with copper or aluminium.
	(i)	Complete the balanced equation for the extraction of copper.
		CuO +C \rightarrow CO ₂ +Cu
		[1]
	(ii)	State whether carbon is oxidised or reduced during the extraction of copper.
		Give a reason for your answer.
		carbon is
		reason
		[1]
	(iii)	State why aluminium cannot be extracted from aluminium oxide by heating with carbon.
		[1]
	(iv)	Explain why argon and other noble gases do not react with either copper or aluminium.
		Use ideas about noble gas electronic structures in your answer.
		[2]
		[Total: 8]

5

			14
6	(a)	Movin	ng water has kinetic energy.
		State	two energy resources which supply useful energy from moving water.
		1	
		2	[2
	(b)	_	5.1 shows a borehole drilled into the Earth to obtain energy. This energy is then used to rate electricity.
		The to	emperature of the rock at the top of the borehole and at the bottom of the borehole is n.
			cold water in steam out ground 15 °C 250 °C
			Fig. 6.1
		(i) C	Calculate the temperature difference between the top and the bottom of the borehole.
			temperature difference =°C [1
		(ii) T	This is an energy resource that uses energy stored in hot rocks below the ground.
		S	State the name of this type of energy resource.
			[1
			Use Fig. 6.1 to describe how the energy is extracted from the borehole and used to generate electrical energy.

(c)	Ene	ergy is stored in batteries.	
	(i)	State the form of energy stored in a battery.	
			[1]
	(ii)	Two electric motors do work using energy from batteries.	
		One of the electric motors does work by lifting a load to a high shelf. The second electric motor has a lower power output but does the same task.	
		Complete the sentences.	
		As the load moves upwards, it has kinetic energy and gains energy.	
		The second motor takes to complete the same task.	[2]
		[Total:	10]

7 (a) Fig. 7.1 shows an incomplete food web.

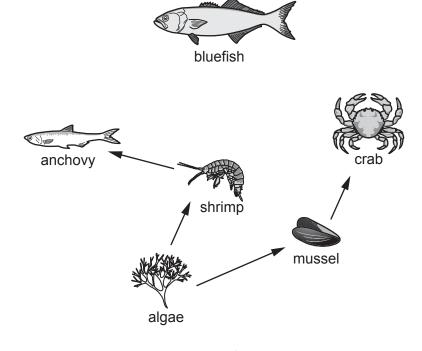


Fig. 7.1

	(1)	i ne bluefish eats the anchovy and the shrimp.	
		Draw two arrows on Fig. 7.1 to show these feeding relationships.	[1]
	(ii)	Identify one primary consumer shown in Fig. 7.1.	
			[1]
	(iii)	State the principal source of energy in all food webs.	
			[1]
(b)	Alga	ae reproduce both sexually and asexually.	
	Stat	te two ways asexual reproduction is different from sexual reproduction.	
	1		
	2		
			 [2]

(c)	Blue	efish are eaten by	humans. They are a source	e of fats.		
	(i)	State the dietary	importance of fats in huma	ns.		
						[1]
	(ii)	Circle the name of	of the chemical used in the	test for the preser	nce of fats in food.	
Be	nedi	ct's solution	biuret solution	ethanol	iodine solution	[1]
	(iii)	Fats are digested	I in the alimentary canal.			
		Complete the ser	ntences to describe the pro	cess of digestion.		
		Digestion is the	breakdown of	inso	oluble food molecules	into
			soluble molecules	s using mechanica	l and chemical proces	ses.
		Chemical digestic	on uses a type of protein th	at functions as a t	oiological catalyst.	
		These proteins a	re called			
						[2]
					[Tota	al: 9]

						18				
8	(a)	Me	hane, CH ₄ , is t	the main co	nstituent o	of nat	ural gas.			
		(i)	Complete the	word equat	tion for the	e con	nplete combus	tion of m	ethane.	
			methane	+		\rightarrow		+	water	[41
		(ii)	Complete the a molecule of		oss diagra	ım in	Fig. 8.1 to sho	ow the ar	rangement of	[1] electrons in
			Show only the	e outer shell	l electrons	6.				
				Н		0	Н			
					F	ig. 8.	1			101
	/ L \		:	4a to al local	wa a a wb a w					[2]
	(D)	⊨tn	ene is an unsa	turated nyd	rocarbon.					
		Αqι	ieous Y is an o	range soluti	on that is	deco	lourised by eth	ene. It is	used as a test	for ethene.
		(i)	State what is	meant by u	nsaturate	d.				
										[1]

(iii) State the type of polymerisation that produces poly(ethene) from ethene.

© UCLES 2023 0653/32/M/J/23

Identify Y.

(ii)

(c)	At –120 °C methane is a gas and ethene is a liquid.
	Describe two differences between the particles in a gas and a liquid.
	1
	2
	[2]
	[Total: 8]

9 Fig. 9.1 shows an electrical circuit.

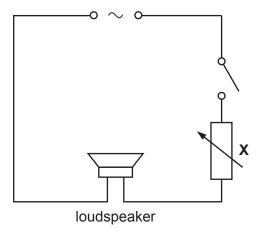


Fig. 9.1

(a) The potential difference across the loudspeaker is 9 V. The current in the loudspeaker is 1.5 A.

Calculate the resistance of the loudspeaker.

Give the unit of your answer.

		resistance = unit [3]
(b)	(i)	
		[1]
	(ii)	Increasing the current in the loudspeaker increases the loudness.
		Explain why increasing the resistance of component ${\bf X}$ decreases the loudness of the sound emitted.
		[1]
	(iii)	The loudness of the sound emitted decreases.
		State the property of the sound waves that changes.
		[41]
		[11]

(c) A lamp is added to the circuit in parallel with the loudspeaker to show when the loudspeaker is switched on.

The lamp is connected so that it is not affected by altering the resistance of component **X**.

On Fig. 9.2, add the lamp to the circuit diagram, using the circuit symbol for a lamp.

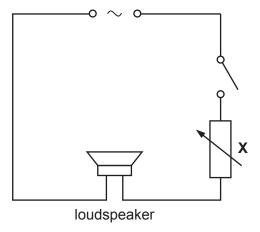


Fig. 9.2

[2]

[Total: 8]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

S
E
ā
Ĕ
E
<u> </u>
ш
of
_
able
5
ਰ
Е
O
Ě
odic
.≌
erio
ň
The
눝
_

		2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
	^			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Αŧ	astatine -			
	 			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium -	116	_	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	2			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	lΉ	flerovium -
	≡			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lT	thallium 204			
										30	Zu	zinc 65	48	р О	cadmium 112	80	БĤ	mercury 201	112	ပ်	copemicium -
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
dn										28	Ë	nickel 59	46	Pd	palladium 106	78	五	platinum 195	110	Ds	darmstadtium -
Group										27	රි	cobalt 59	45	格	rhodium 103	77	Ľ	iridium 192	109		meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
				J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	д	tantalum 181	105	Op	dubnium –
				10	ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿏	rutherfordium -
							,			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	99	Ba	barium 137	88	Ra	radium -
	_			3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ъ́	francium -

71 Lu	lutetium 175	103	ت	lawrencium	I
70 Yb	ytterbium 173	102	N _o	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	ı
₈₈ Г	erbium 167	100	Fm	fermium	I
0H ²⁹	holmium 165	66	Es	einsteinium	ı
。 Dy	dysprosium 163	86	ర్	califomium	I
e5 Tb	terbium 159	62	益	berkelium	I
64 G d	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	I
62 Sm	samarium 150	94	Pn	plutonium	ı
e1 Pm	promethium —	93	Ν	neptunium	ı
PN	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
58 Ce	cerium 140	06	드	thorium	232
57 La	lanthanum 139	89	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).